RESEARCH OVERVIEW OF THE AU – STORMWATER RESEARCH FACILITY

CLEAR WATER ALABAMA - SEPTEMBER 20TH & 21ST, 2023

Wesley N. Donald, Ph.D.

Research Fellow Civil & Environmental Engineering

CONSTRUCTION ACTIVITIES ARE THE LARGEST HUMAN INDUCED NON-POINT SOURCE OF SEDIMENT

NEEDS: IMPROVE PERFORMANCE OF EXISTING PRACTICES, ADVANCE E&SC DESIGN STANDARDS, INSURE PROPER IMPLEMENTATION

STORMWATER

Stormwater

AU - EROSION & SEDIMENT CONTROL TESTING FACILITY

ALDOT STANDARD DRAWINGS

OPTIMIZATION OF SEDIMENT BASIN CONFIGURATIONS

ALDOT STANDARD

Purpose: capture & passively treat stormwater runoff by providing extended detention & promoting gravitational settling

BASIN SIZING

- Basin size/shape influences trapping efficiency
- Volume design
 - Volume sizing factor: 3,600 ft³/ac
 - Hydrologic design: 2-yr, 24-hr event
 - **AL dimension recommendations**
 - Basin length to width $(L:W) \ge 2:1$
 - Side slopes H:V ≥ 2:1
 - Depth 2-5 ft
- Max. drainage area: 10 ac

BASIN DESIGNS

STANDARD BASIN

IN-CHANNEL BASIN

UNDERSIZED BASIN

SAMPLE PROCESSING

- Basin dried with heat lamps
- Sediment split by location of bays

SAMPLE PROCESSING

- Spillway & skimmer discharge troughs floc'd
 - H30 flocculant
 - 2 mg/L
 - 24 hours of settling

IN-CHANNEL (10:1) SEDIMENT RETENTION

IN-CHANNEL (10:1) SEDIMENT RETENTION

IN-CHANNEL (10:1) SEDIMENT RETENTION

UNDERSIZED BASIN SEDIMENT RETENTION

FLOCCULANT TEST SERIES: SPILLWAY DISCHARGE (%)

UAS FOR VEGETATION ESTABLISHMENT

Construction General Permit Requires Regular Inspection and Maintenance of E&SC Practices

Notice of Termination relives ALDOT of I&M Obligations

FINAL STABILIZATION

100% of soil surface uniformly covered in permanent vegetation with density of 85% or greater

KEY CHALLENGES

Vegetative establishment currently determined using visual assessments

There is a need to better document vegetative establishment, species coverage and density

IMAGING METHODS

Canon EOS Rebel

Ultra-High-Res RGB image for ground truthing and AI-based vegetation mapping

Skydio 2

High-Res RGB image for vegetation species mapping at 30-foot altitude

Sentera

6X

Multi/Hyperspectral image for vegetation cover mapping at 200-foot altitude

DJI Matrice 600 Pro

Headwall NanoHyperSpec

IMAGE DATASET

• 9 Grass categories

Original images

Annotated images

Percentage of pixels for different grass categories

DEEP LEARNING – VEGETATION SPECIES PREDICTION

Bahia Weeds

Brown top millet Coffee bean weeds Weeds

DEEP LEARNING – VEGETATION SPECIES PREDICTION

	Ground truth										
Predicted	Classes	Background	Annual ryegrass	Bahia	Bermuda	Crab grass	Brown top millet	Fescue	Coffee bean weed	Johnson grass	Other vegetation
	Background	0.807	0.021	0.008	0.079	0.145	0.065	0.09	0.059	0.013	0.163
	Annual ryegrass	0.014	0.74	0	0.046	0.007	0	0	0	0	0.05
	Bahia	0.006	0	0.917	0.083	0.001	0.007	0	0.005	0.086	0.006
	Bermuda	0.001	0	0	0.399	0.006	0	0	0	0	0.001
	Crab grass	0.048	0.037	0.007	0.241	0.724	0	0.015	0	0.004	0.035
	Brown top millet	0.069	0.058	0.033	0.016	0.006	0.896	0.003	0.103	0.104	0.046
	Fescue	0.018	0	0	0.064	0.02	0	0.841	0	0.001	0.002
	Coffee bean wee	0.008	0	0.007	0.003	0	0.014	0	0.739	0.005	0.043
	Johnson grass	0.009	0.124	0.011	0.008	0.062	0.006	0.05	0.03	0.78	0.03
	Other vegetation	0.02	0.02	0.017	0.061	0.029	0.011	0.001	0.064	0.008	0.624

- False negative (Yellow columns) Actual other grass species but predicted as Johnson grass by our model.
- Blue columns Actual other grass species but predicted as Johnson grass by our model
- Confusion matrix generated for InceptionResNetV2 architecture on the test dataset.
- Mean Intersection over union (mIOU) score achieved 0.772

2023 ALDOT SITES IMAGERY

Montgomery on June 9

Sample images from Skydio 2

Guidance for using Flocculants on Construction Sites

AUBURN UNIVERSITY HIGHWAY RESEARCH CENTER

E&SC PRACTICES - REGULATIONS

FLOCCULANTS

<u>**Turbidity</u>** is the **cloudiness or haziness** of a fluid caused by individual particles (suspended solids) that are generally invisible to the naked eye.</u>

WHAT ARE FLOCCULANTS?

Coagulation:

Chemical process that neutralizes colloid charge that causes particles to repel each other.

WHAT ARE FLOCCULANTS?

Coagulation:

Chemical process that neutralizes colloid charge that causes particles to repel each other.

Flocculation:

Physical process that adheres neutral particles together to form larger flocs that can settle out of suspension.

WHAT ARE FLOCCULANTS?

Coagulation:

Chemical process that neutralizes colloid charge that causes particles to repel each other.

Facilitate coagulation and flocculation

Increases sedimentation rate

Decreases detention time

Flocculation:

Physical process that adheres neutral particles together to form larger flocs that can settle out of suspension.

WHAT ARE FLOCCULANTS?

Coagulation:

Chemical process that neutralizes colloid charge that causes particles to repel each other.

Facilitate coagulation and flocculation

Increases sedimentation rate

Decreases detention time

Flocculation:

Physical process that adheres neutral particles together to form larger flocs that can settle out of suspension.

FLOCCULANT DETECTION

DETECTION METHOD - SETTLING VELOCITY

PHYSICAL FORMS OF FLOCCULANTS

Crystalline Powder/Granular

Emulsion/Aqueous/Liquid

Block/Log

Slide credit: Mike Perez

COMMON CHALLENGES

LARGE-SCALE TESTING

INFLUENCING CONDITIONS

PAM LETHAL CONCENTRATION

GRANULAR FIELD TESTING

Flow: 0.75 ft^3/s Sediment Intro: 17.8 *lb./min* Flocculant Dosing: 2.1 *oz/wattle* = 6.3 *oz*

39 51

Water Introduction System

Sediment Mixing Trough

DC-2(F)

DC-1(F)

Underground Corrugated Pipe P

110 #-

G

N

DC-3(F)

Flow Direction -

GRANULAR FIELD TESTING

10 ft Long 20 in. Strow Wattles

Flow: 0.75 ft^3/s Sediment Intro: 17.8 *lb./min* Flocculant Dosing: 2.1 *oz/wattle* = 6.3 *oz*

GRANULAR FIELD TEST RESULTS

Recommendation:

2.1 oz (60 g) per ditch check

Limit flocculant application to a maximum of three wattles within a 250 ft channel section.

Recommendation:

Reapply granular flocculant after 3600 ft^3 of flow or 1.0 in. of runoff per acre.

BLOCK FIELD TESTING

BLOCK FIELD TESTING

Flow: 1.8 ft^3/s Sediment Intro: 17.8 *lb./min* Flocculant Dosing: 2 *Blocks*/9 *min* = 8 *Blocks*

BLOCK FIELD TEST RESULTS

Pond Prediction Equation

More Blocks = higher flocculant dosing.

Blocks are difficult to quantify residual concentrations.

BLOCK FIELD TEST RESULTS

0.3 - 0.5 mm 0.5 - 0.75 mm	0.75 – 1.0 mm	1.0 – 1.5 mm	1.5 - 2.25 mm	2.25 - 3.0 mm	3.0 – 4.5 mm
			• • • • •	· • · ·	
				້ໍໍ	0 9
			• • •	0 0 0	° 0
				0 ° 0	.0

Recommendation:

1 block per 0.3 cfs

CONCLUSION

Collection Methods

- Avoid multi-use plastic
- Maintain consistent time until processing after sample is collected
- Protect samples from temperature changes
- **Detection Methods**
 - Viscosity changes were not easily detectable with the desired concentration ranges
 - Temperature and pH need to be accounted
 - Block form flocculants require further analysis for quantifying

CONCLUSION

Dosage Recommendations

- Granular = 2.1 oz (60 g) per ditch check and limit application to a maximum of three wattles within a 250 ft channel section. Reapply after 3,600 ft³ of flow or 1.0 in. of runoff per acre
- Block = 1 block per 0.3 cfs

Installation

At least 1 DC without flocculant at the end of the channel

Overall

 Accounting for environmental conditions, residual flocculant can be easily detected in the field

Designing & Evaluating Infiltration Swales for Retaining & Infiltrating Roadway Stormwater Runoff

AUBURN UNIVERSITY HIGHWAY RESEARCH CENTER

INFILTRATION SWALES

Engineered system that promotes groundwater infiltration and reduces surface runoff

T2: SMALL-SCALE TESTING

INFILTRATION RATES OF VARIOUS LAYER CONFIGURATIONS – CONSTANT HEAD TEST

INFILTRATION RATES OF VARIOUS LAYER CONFIGURATIONS – FALLING HEAD TEST

COLUMN TESTING FINDINGS > FIELD APPLICATION

- Topsoil is limiting layer
- 80/20 pine bark fines amendment improves infiltration
 - Increased permeability by 9x
 - Column test infiltration improved by 2.6 to 3.1x
- Consider reducing 12 in. topsoil layer to 6 in.
- Geotextile reduces infiltration rate
 - Pea gravel increased infiltration rate by 2.2 to 3.1x

INFILTRATION SWALE MEDIA – TEST IN SMALL BOX ALDOT SAMPLE

INFILTRATION SWALE MEDIA – TEST IN SMALL BOX F3 SAMPLE

F3 SAMPLE IN CLEAR COLUMNS

PLASTIC INSTALLATION

Elimination of folds with tape

GEOTEXTILE INSTALLATION

#57 SEVEN STONE PLACING

GEOTEXTILE SEWING

SAND INSTALLATION

TOPSOIL INSTALLATION

3D VIEW OF SENSORS LOCATION INSIDE THE INFILTRATION SWALE

CONSTRUCTION OF ALDOT INFILTRATION SWALE

CONSTRUCTION OF ALDOT INFILTRATION SWALE

BERMUDA ROLLED SOD

INFILTRATION SWALE LAYERS W/ MOISTURE SENSORS

TEROS 10 MOISTURE CONTENT SENSORS

Moisture Content Data (5/23/23 - 5/30/23)

5/23/2023 0:00 5/24/2023 0:00 5/25/2023 0:00 5/26/2023 0:00 5/27/2023 0:00 5/28/2023 0:00 5/29/2023 0:00 5/30/2023 0:00 5/31/2023 0:00

FUTURE TESTING

- Use small scale data to determine new large scale design
- Intermediate Lab-scale tests
 - Verify current ALDOT design testing results
 - Inform potential performance of new design
- Construct new design
- Test to compare performance to old ALDOT design
- Evaluate longevity and maintenance

PERFORMANCE EVALUATION OF SLASH MULCH BERMS AS SEDIMENT BARRIERS

METHODOLOGY

- Installed berms in three lifts, compacted using bucket of excavator
- 6 in. deep triangular key
- Subjected to peak 30 min of 2yr, 24-hr storm in Alabama
 - Flow introduced: 0.2 ft³/s
 - Sediment introduced: 37.6 lb/min of sediment
- Water grab samples taken at 5 min intervals

METHODOLOGY

- Plastic was laid beneath berm and berm was installed at end of earthen area
- Upstream & downstream sediment collected and measured
- Mass balance of upstream and downstream
 - Deposited upstream
 - Captured within
 - Lost downstream

SAMPLE LOCATIONS

IMPOUNDMENT AND FLOW

- Under 6 in. of impoundment depth during test period
 - For installations with berm at rear of test bed
 - 10 in. for installation in center of test bed
- Dewatered quickly, reaching under 1 in. of depth within 30 min of conclusion of flow
- 20% lower flow through rate than introduction flow rate

SEDIMENT RETENTION

Dry Weight of Soil Introduced (Ib)	3,209	
Dry Weight of Soil Retained Upstream (Ib)	2,838	
Percent Retained Upstream (%)	88.4%	
Dry Weight of Soil Captured Downstream (Ib)	57.5	
Percent Lost Downstream (%)	1.8%	

98.2% sediment capture through installation

WATER QUALITY

WATER QUALITY

Discharge turbidity less than impoundment turbidity	Turbidity at surface of impoundment (S2)(NTU)	2,887
 Indicates filtration Water quality degrades after 	Turbidity at bottom of impoundment (\$3)(NTU)	2,929
- valer quality degrades and		
each subsequent storm event	Discharge turbidity (S4)(NTU)	631
First storm event avg. 473 NTU	Difference between	1 5
Third storm event avg. 780 NTU	S2 and S3 (%)	I.5
	Difference between \$3 and \$4 (%)	78.5

CONCLUSIONS

Treated water quality in Turbidity and Total Suspended Solids (78.5% and 83.9%, respectively)

Captured 98% of introduced sediment

- 88% occurring upstream
- ~10% occurring within berm
- Low impoundment levels
 - Can likely be increased through increased compaction
- Discharge turbidity increased with each subsequent storm event
 Third event discharge averaged 65% higher than first in turbidity

BRANDING & MARKETING

Auburn Stormwater

SERIES

30 views

PLAVI ISTS

CHANNELS

0 subscribers

VIDEOS

Stormwater Testing Facility

The Stormwater Testing Facility at Auburn University is dedicated to crafting innovative and practical storm water management solutions. Since 2009, the facility has advanced the body of knowledge through Interdisciplinary research, product evaluation, and hands-on training. We are excited to be at the forefront of stormwater research, and we welcome the opportunity to share that excitement with you.

Upcoming Events

- Date Event name
- Date Event name
- Date Event name

No upcoming events.

Contact Us

stormwater@aubum.edu Stormwater Testing Facility:

> 1600 Lee Rd. 151 Opelika, AL 36840 Dr. Mike Perez

mike.perez@aubum.edu (334) 844-6267

Dr. Wesley Donald donalwn@auburn.edu (334) 844-6249

ponsorship & Exhibitor Opportunities Available

Uploads PLAY ALL

AU-ESCTE Intro

52 views · 2 months ago

Upper Pond Construction

3 views • 1 year ago

DISCUSSION

FENCE BARRIER -. BARRIER - TRENCHLESS ... 261 views + 2 years ago

YouTube

SUBSCRIBED

F SORT BY

Upcoming events

Training

Erosion & Sediment Control Installer

Thu Nov 18

511 views - 1 year ago

AU - Erosion & Sediment Control Testing Facility 4 23 Tweets

AU - Erosion & Sediment Control Testing Facility @StormwaterAU

The AU-ESCTF is an Auburn University research center focused on providing research, testing, and training for the erosion and sediment control industry.

O Auburn, AL S eng.auburn.edu/research/cente... III Joined April 2021

Erosion & Sediment Control Field Day

Madison Moreman and 1 other attendee

Nov 19, 8:00 AM

News and Updates

- New Publication Alert: Hydraulic Performance Evaluation of
- Tweets ty @StormastatAl

TRAINING

RESEARCH

International Erosion Control Association

Protecting Soil and Water Resources

2024 Auburn University E&SC Installer Training | May 13 & 14

2024 Auburn University E&SC Installer Training | May 13 & 14

AU-SRF INSTALLER TRAINING & FIELD DAY W/ IECA

2024 Municipal Wet Weather Stormwater Conference

Auburn University

May 15 - 17, 2024

Save the Date

Wednesday, May 15 & Thursday, May 16th With Optional Field Day on Friday, May 17th MICHAEL A. PEREZ, PH.D., P.E., CPESC (334) 844-6267 | <u>MIKE.PEREZ@AUBURN.EDU</u> WESLEY N. DONALD, PH.D., CPESC (334) 844-6249 | <u>DONALWN@AUBURN.EDU</u>

AUBURN UNIVERSITY STORMWATER RESEARCH FACILITY STORMWATER.AUBURN.EDU

